\[
\frac{U_{C1}}{U_0} = x, \quad \frac{U_{C2}}{U_0} = y, \quad \frac{t}{RC_1} = t, \quad \frac{C_2}{C_1} = a, \quad \frac{R}{R_6} = 1 - b
\]

we obtain the set of equations describing the ‘2D’ oscillator:

\[
\begin{align*}
\frac{dx}{dt} &= -x + (k_1 - 1)y \\
\frac{dy}{dt} &= -x + (k_1 - 2)y - s(y)
\end{align*}
\] \hspace{1cm} (2)

Here \(s(y) = \pm 1\), namely \(s(y) = s(1-2H(y-b))\), where \(H(y)\) is the Heaviside function, that is \(H(y < 0) = 0, H(y \geq 0) = 1\). The value of \(s\) alternates discretely between two quantities, \(+1\) and \(-1\). Thus, the phase space of the system is reduced to the ‘2D’ space consisting of two overlapping plane surfaces, \(s = 1\) and \(s = -1\).

The output voltages are simply \(U_{out} = y/k_1 U_0\) and \(U_{out} = -s/k_1 U_0\).

Experimental results: The circuit has been built using the following set of element values: \(R_1 = R_2 = 3.9\ \text{k}\Omega, \quad R_3 = 3.6\ \text{k}\Omega, \quad R_4 = 1.2\ \text{k}\Omega, \quad R_5 = 12\ \text{k}\Omega. \quad R_6 = 15\ \text{k}\Omega, \quad C_1 = 15\ \text{nF}, \quad C_2 = 33\ \text{nF} with a tolerance of 10%.

The circuit has been built using the following set of element values: \(R_1 = R_2 = 3.9\ \text{k}\Omega, \quad R_3 = 3.6\ \text{k}\Omega, \quad R_4 = 1.2\ \text{k}\Omega, \quad R_5 = 12\ \text{k}\Omega. \quad R_6 = 15\ \text{k}\Omega, \quad C_1 = 15\ \text{nF}, \quad C_2 = 33\ \text{nF} with a tolerance of 10%.

The OA1 and OA2 are LM741 type, or equivalent, operational amplifiers. \(R_4\) is an adjustable resistor used to tune the circuit and to achieve the chaotic mode of the oscillations. \(D_1\) and \(D_2\) are general purpose diodes, e.g. type 1N914 or similar. The output voltages \(U_{out}^1, \quad U_{out}^2, \quad U_{out}^3, \quad U_{out}^4, \quad \text{and} \quad U_{out}^5\), have been taken using a digitising oscilloscope TDS 520A. The experimental phase portrait is presented in Fig. 5b, and the corresponding waveforms \(U_{out}^1(t)\) and \(U_{out}^2(t)\) are shown in Fig. 6.

The oscillator's type is determined by the finite value of \(R_6\), which has been neglected in the equations.

In addition, the correlation dimension of the double-scroll chaotic attractor has been estimated from the experimental time series \(U_{out}^1(t)\). The obtained experimental quantity \(d = 2\) is in good agreement with the value computed from the model.

Conclusions: We have designed and examined a simple RC chaotic oscillator exhibiting the double-scroll type chaotic attractor. The circuit can easily be built in any laboratory and can be used for modelling and studying chaotic phenomena.

Acknowledgment: This work was partially supported by the EEC under contract No. ERBCIPDCT940011.

© IEEE 1996
Electronics Letters Online No: 19960829

A. Tarnasievičius, G. Mykolaitis and A. Namatė (Semiconductor Physics Institute, A. Grigalas 11, Vilnius, LT 2606, Lithuania)

References

High-swing cascade MOS current mirror

J. Mulder, A.C. van der Woerd, W.A. Serdijn and A.H.M. van Roermund

Indexing terms: CMOS integrated circuits, Current mirrors

A high-swing cascade triode-region MOS current mirror, basically comprising a triode-region translinear loop, is proposed. A translinear analysis and measurement results are presented.
Introduction: Owing to the trend towards lower supply voltages in modern VLSI systems, many well-known conventional circuit techniques are no longer applicable. An important example is the current mirror, a prevalent basic building block. The output voltage swing is severely reduced, especially for high performance implementations, like the cascade and the standard and improved Wilson current mirrors [1].

A number of low voltage high-swing cascode current mirrors have been proposed, e.g. [2, 3]. In these designs, voltage room is gained by operating the grounded MOSTs at the verge of saturation. An even higher output voltage swing is obtained when the grounded MOSTs are operated in the triode region, as was proposed recently in [4].

In this Letter another triode-region high-swing cascode current mirror is presented.

![Fig. 1 Cascade current mirrors using triode-region MOSTs](image)

Circuit description and measurements: The proposed current mirror is shown in Fig. 1a. Transistors M_1 and M_2 are operated in the triode region. The operation of the circuit becomes intuitively clear if we regard M_1 and M_2 as active resistors, biased at a constant gate voltage through the diode-connected transistor M_3. Then, the circuit resembles a simple current mirror, comprising M_3 and M_4, with source degeneration. The degeneration resistors increase the output resistance of the current mirror. As M_2 operates in the triode region, the mirror provides cascode-type output resistance for output voltages even lower than $2V_{BE}$.

The output resistance of the circuit is approximately given by

$$r_{out} \approx \frac{g_{m3}}{g_{m4}} \left(\frac{1}{g_{m4}} \right)$$

An exact description of the circuit's operation is obtained from a large-signal analysis. A suitable MOST model for the triode region in weak inversion [5]:

$$I_{DS} = I_F \exp \left(\frac{V_G}{nU_T} \right) \left(\exp \frac{V_S}{U_T} - \exp \frac{V_D}{U_T} \right)$$

where all symbols have their usual meaning.

Now, a translinear analysis can be performed by recognizing that the current mirror basically consists of a translinear loop, comprising two MOSTs operating in the saturation region M_1 and M_2, and two MOSTs operating in the triode region M_3 and M_4. Kirchoff's voltage law yields

$$V_{GS1} - V_{DS1} = V_{GS2} - V_{DS2}$$

A translinear translation of the KVL in terms of currents is found from eqn. 1: $IDS/IRX = I_{GS1}/I_{DS1}$ and I_{DS2} equal I_F and I_{out} respectively. The forward currents I_{DS1} and I_{DS2} are equal $I_{DS} = I_F$. As the drain currents I_{DS1} and M_2 equal I_F and I_{out} respectively, their reverse currents are found from eqn. 2: $I_{out} = I_F - I_{DS1}$ and $I_{DS2} = I_{out} - I_{DS1}$. The translinear loop equation thus becomes

$$I_{out} (I_{DS1} - I_{DS2}) = I_{out} (I_F - I_{DS1})$$

The solution of this equation is indeed $I_{DS1} = I_{DS2}$.

The deviation from the ideal transfer function of the current mirror shown in Fig. 1a was measured using a transistor array. The aspect ratio of the used MOSTs was W/L = 108/7.5 μm. The bias current was $I_F = 100$ mA. The results are shown in Fig. 2.

The input current of the current mirror shown in Fig. 1a is limited. As I_F is positive by definition, eqn. 4 shows that $I_{DS1} < I_{DS2}$. This limitation can be overcome by using an adaptive biasing method [2, 3], which is illustrated in Fig. 1b. By exchanging I_F in eqn. 4 with $A I_{DS1}$, where $A > 1$, I_{DS1} and I_{DS2} remain positive for all values of I_{out}. Correct operation was verified by simulations.

Conclusions: A novel high-swing cascode triode-region MOS current mirror was presented. The circuit resembles a simple current mirror with source degeneration. As the circuit comprises a triode-region translinear loop, a large signal description was found through a translinear analysis. The operation of the circuit was verified by measurements.

© IEE 1996

Data-aided phase tracking detection of Doppler shifted MPSK

L. Bin and P. Ho

Indexed terms: Digital communication systems, Phase shift keying

A new data-aided phase tracking detection for Doppler shifted MPSK is presented, and simulation results are given. It is shown that the data-aided phase tracking detection of Doppler shifted MPSK provides good error performance.

Introduction: In digital communications applications where carrier phase and/or frequency are likely to be uncertain, e.g. a multipath fading environment, noncoherent detection or differential